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Abstract—Compared  to  visible  spectrum  image  the  infrared 

image  is  much clearer  in  poor  lighting  conditions.  Infrared 

imaging devices are capable to operate even without the 

availability of visible light, acquires clear images of objects which 

are helpful in efficient classification and detection. For image 

object classification and detection, CNN which belongs to the class 

of feed-forward ANN, has been successfully used. Fast RCNN 

combines advantages of modern CNN detectors i.e. RCNN and 

SPPnet to classify object proposals more efficiently, resulting in 

better and faster detection. To further improve the detection rate 

and speed of Fast RCNN, two modifications are proposed in this 

paper. One for accuracy in which an extra convolutional layer is 

added to the network and named it as Fast RCNN type 2, other for 

speed in which the input channel is reduced from three channel 

input to one and named as Fast RCNN type 3.  
Fast RCNN type 1 ( original Fast RCNN ) has better detection 
rate than RCNN (60.3636 : 54.54318), with 3.5 x RCNN training 
and 2.5 x RCNN test speed. Compare to Fast RCNN, Fast RCNN 
type 2 has better detection rate (63.42% : 60.36%) while Fast 
RCNN type 3 is faster (having 1.018 x FastRCNN training and 
1.04 x FastRCNN test speed). 

Keywords—ANN, CNN, Overfeat, SPPnet, RCNN, Fast RCNN. 

I. INTRODUCTION 

Pedestrian detection is an extensively studied research area in 
image processing due to its importance for practical application. 
In image processing, as compared to visible spectrum image the 
infrared image is much clearer in poor lighting conditions. 
Infrared imaging devices are capable of operating even without 
the availability of visible light. The fast-improving functioning 
and decreasing prices have spurred speedy expansion in 
infrared cameras usage in a wide range of areas with varied 
capabilities. Infrared Image processing has numerous 
applications and great research value in industrial, scientific, 
and medical fields. E.g. automatic detection of targets through 
infrared devices has been widely used in civil and military 
domains and forms the basis for infrared search and track 
(IRST) [1] [2]. In the civil domain, video surveillance and smart 
vehicle driver assistance mostly use infrared technology. 
Pedestrian detection systems can be implemented in vehicles to 
automatically brake a vehicle to avoid striking a pedestrian [3] 
[4]. Pedestrian detection and recognition is an important part of 
intelligent monitoring system, hence becoming an actively 
growing research area in computer vision. 

Conventional methods for pedestrian detection [5] [6] [7] 
consist of feature extraction, which is manually designed, and 
trained classification, which is based on machine learning 

techniques. In particularly, feature design requires human 
knowledge to ensure robustness. To overcome this problem, 
deep learning-based approaches have attracted attention 
recently. Deep learning, especially in CNN, has excellent 
feature representation and classification abilities. Krizhevsky 
has shown the potential of CNN on 1000 class object 
recognition benchmark (ILSVRC) [8] . After this breakthrough, 
Deep Learning approaches have been applied to many 
problems, such as house number recognition, scene labeling, 
object classification and detection. 

II. RELATED WORK 

In 2014 an integrated framework was proposed by Pierre 
Sermanet et al by using Convolutional Network for 
classification, localization and detection simultaneously [9]. 
This new methodology for localization and detection by 
collecting projected enclosing boxes depicted that integrating 
various localization calculations, detection is  possible without 
the requirement of training on background samples. It also 
showed that lengthy and complex bootstrapping training passes 
are avoidable which allows the network to be focused on 
positive classes only. Later in 2014, Region Based Convolution 
Neural Network (R-CNN) was proposed by Ross Girshick et al 
[10] in which they used 2000 category independent region 
proposals generated for the input image, a fixed-length feature 
vector was extracted from each proposal using CNN which then 
classified each region with category-specific linear SVMs. To 
compute a fixed-size CNN input from each region proposal 
“affine image wrapping” is used, regardless of the region’s 
shape. This warpping of the content sometimes results in 
unwanted distortion. Recognition accuracy is decreased due to 
the content loss or distortion. Besides, a pre-defined scale may 
not be suitable when object scales vary. To solve this problem, 
Kaiming He et al in 2015 introduced Spatial Pyramid Pooling 
Layer to CNNs to remove the fixed size constraint and named 
it SPPnet [11] in which the convolutional layers accept arbitrary 
input sizes but they produce outputs of variable sizes. The 
classifiers (SVM/Softmax) or fully-connected layers requires 
fixed-length vectors. Such vectors can be generated by the Bag-
of-Words (BoW) approach [12], that pools the features 
together. Spatial pyramid pooling [13] improves BoW in which 
it maintains spatial information by pooling in local spatial bins. 
These spatial bins have sizes proportional to the image size, 
keeping the number of bins fixed regardless of the image size. 
Considering the advantages RCNN and SPPnet, Ross Grishick 
in 2015 proposed Fast RCNN [14], a combined version of 
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RCNN [10] and SPPnet [11] which efficiently classifies object 
proposals using deep convolutional networks. 

III. FAST RCNN 

A Fast R-CNN network takes as input an entire image and a set 
of object proposals generated by region proposal network as 
input [15]. The network first processes the whole image with 
several convolutional and max pooling layers to produce a conv 
feature map. Then, for each object proposal a region of interest 
(RoI), pooling layer extracts a fixed-length feature vector from 
the feature map. Each feature vector is fed into a sequence of 
fully connected (fc) layers that finally branch into two sibling 
output layers One that produces softmax probability estimates 
over K object classes plus a catch-all “background” class and 
Another layer that outputs four real-valued numbers for each of 
the K object classes. Each set of 4 values encodes refined 
bounding-box positions for one of the K classes. (See figure 
below).

 

Fig.1. Overview of Fast RCNN 

A. Region Proposal 

A variety of methods are available for generating category-
independent region proposals such as Selective search [16], 
Objectness [17] and category-independent object proposals 
[18] etc. Fast RCNN uses selective search ‘Edge Boxes’ 
locating object proposal [15] method to generate RoI from 
edges within an image. 

 

Fig. 2. An illustration of random bboxes with IoU of 0.5, 0.7, and 0.9 

a bounding box is typically measured using the Intersection 
over Union (IoU) metric. IoU computes the intersection of a 
candidate box and the ground truth box divided by the area of 
their union. IoU scores of greater than 0.5 are generally desired. 
An IoU of 0.7 provides a reasonable compromise between very 
loose (IoU of 0.5) and very strict (IoU of 0.9) overlap values. 

B. RoI Pooling 

The RoI pooling layer uses max pooling to convert the features 
inside any valid region of interest into a small feature map with 
a fixed spatial extent of H ×W (e.g., 7 × 7), where H and W are 
layer hyper-parameters that are independent of any particular 
RoI. RoI is a rectangular window into a conv feature map as 

shown in fig.1 by RoI-Projection. Each RoI is defined by a four 
values (r, c, h, w) that specifies its top-left corner (r, c) and its 
height and width (h, w).  

C. Training 

Fast R-CNN uses a streamlined training process with one fine-
tuning stage that jointly optimizes a softmax classifier and 
bounding-box regressors, rather than training a softmax 
classifier, SVMs, and regressors in three separate stages. The 
components of this procedure are the loss, mini-batch sampling 
strategy, back-propagation through RoI pooling layers, and 
SGD hyper-parameters. 

1) Multi-task loss 

A Fast R-CNN network has two sibling output layers. The first 
outputs a discrete probability distribution (per RoI), 𝑝 =
(𝑝0, … … … , 𝑝𝑘) , over 𝐾 +  1  categories. As usual, p is 
computed by a softmax over the 𝐾 + 1  outputs of a fully 
connected layer. The second sibling layer outputs bounding-

box regression offsets, 𝑡𝑘 = (𝑡𝑥
𝑘 , 𝑡𝑦

𝑘, 𝑡𝑤
𝑘 , 𝑡ℎ

𝑘), for each of the K 

object classes, indexed by k. The parameterization for 𝑡𝑘  
specifies a scale-invariant translation and log-space 
height/width shift relative to an object proposal. Each training 
RoI is labeled with a ground-truth class u and a ground-truth 
bounding-box regression target v. Multi-task loss L on each 
labeled RoI to jointly train for classification and bounding-box 
regression: 

𝐿(𝑝, 𝑢, 𝑡𝑢, 𝑣) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) (1) 

In which 𝐿𝑐𝑙𝑠(𝑝, 𝑢) =  − log 𝑝𝑢 is log loss for true class u. The 
second task loss, 𝐿𝑙𝑜𝑐  , is defined over a tuple of true bounding-
box regression targets for class 𝑢, 𝑣 =  (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑤 , 𝑣ℎ) , and a 

predicted 𝑡𝑢 = (𝑡𝑥
𝑢, 𝑡𝑦

𝑢, 𝑡𝑤
𝑢 , 𝑡ℎ

𝑢) , again for class 𝑢. The Iverson 

bracket indicator function[𝑢 ≥ 1] evaluates to 1 when [𝑢 ≥ 1] 
and 0 otherwise. By convention the catch-all background class 
is labeled 𝑢 =  0. For background RoIs there is no notion of a 
ground-truth bounding box and hence 𝐿𝑙𝑜𝑐  is ignored. For 
bounding-box regression, we use the loss 

𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) = ∑ 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑡𝑖

𝑢 −

𝑖𝜖{𝑥,𝑦,𝑤,ℎ}

𝑣𝑖) 
(2) 

In which 

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) = {

0.5𝑥2             𝑖𝑓 |𝑥| < 1 
|𝑥| − 0.5       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 
(3) 

is a robust 𝐿1 loss that is less sensitive to outliers than the 𝐿2 
loss used in R-CNN and SPPnet. When the regression targets 
are unbounded, training with 𝐿2 loss can require careful tuning 
of learning rates in order to prevent exploding gradients. Eq. 3 
eliminates this sensitivity. The hyper-parameter 𝜆  in Eq. 1 
controls the balance between the two task losses. We normalize 
the ground-truth regression targets 𝑣𝑖  to have zero mean and 
unit variance. All experiments use = 1 .  

2) Mini-batch sampling 

During fine-tuning, each SGD mini-batch is constructed from 
N = 2 images, chosen uniformly at random (as is common 
practice, which actually is iterated over permutations of the 
dataset). Mini-batches of size R = 128, sampling 64 RoIs is used 
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from each image. Total of 25% of the RoIs from object 
proposals that have intersection over union (IoU) overlap with 
a groundtruth bounding box of at least 0.5 are chosen. These 
RoIs comprise the examples labeled with a foreground object 
class, i.e. [𝑢 ≥ 1]  . The remaining RoIs are sampled from 
object proposals that have a maximum IoU with ground truth in 
the interval [0.1, 0.5) . These are the background examples and 
are labeled with 𝑢 =  0 . During training, images are 
horizontally flipped with probability 0.5. No other data 
augmentation is used.  

3) Back-propagation through RoI pooling layers 

Backpropagation routes derivatives through the RoI pooling 
layer. Let 𝑥𝑖 ∈ ℝ  be the i-th activation input into the RoI 
pooling layer and let 𝑦𝑟𝑗  be the layer’s j-th output from the r- th 

RoI. The RoI pooling layer computes 𝑦𝑟𝑗 = 𝑥𝑖∗(𝑟,𝑗), in which 

𝑖 ∗ (𝑟, 𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖′∗(𝑟,𝑗)𝑥𝑖′ . 𝑅(𝑟,𝑗) is the index set of inputs in 

the sub-window over which the output unit 𝑦𝑟𝑗  max pools. A 

single 𝑥𝑖 may be assigned to several different outputs 𝑦𝑟𝑗 .  

The RoI pooling layer’s backwards function computes partial 
derivative of the loss function with respect to each input 
variable xi by following the argmax switches:  

𝜕𝐿

𝜕𝑥𝑖

= ∑ ∑[𝑖 = 𝑖 ∗ (𝑟, 𝑗)]
𝜕𝐿

𝜕𝑦𝑟𝑗
𝑗𝑟

 
(4) 

In words, for each mini-batch RoI r and for each pooling output 

unit 𝑦𝑟𝑗  , the partial derivative 
𝜕𝐿

𝜕𝑦𝑟𝑗
 is accumulated if i is the 

argmax selected for 𝑦𝑟𝑗  by max pooling. In back-propagation, 

the partial derivatives 
𝜕𝐿

𝜕𝑦𝑟𝑗
 are already computed by the 

backwards function of the layer on top of the RoI pooling layer. 

4) SGD hyper-parameters. 

The fully connected layers used for softmax classification and 
bounding-box regression are initialized from zero-mean 
Gaussian distributions with standard deviations 0.01 and 0.001, 
respectively. Biases are initialized to 0. All layers use a per-
layer learning rate of 1 for weights and 2 for biases and a global 
learning rate of 0.001.  

D. Scale invariance 

To achieving scale invariant object detection image pyramids is 
used which provides approximate scale-invariance to the 
network through an image pyramid. At test-time, the image 
pyramid is used to approximately scale-normalize each object 
proposal. 

E. Detection 

Once a Fast R-CNN network is fine-tuned, the network takes as 
input an image and a list of R object proposals (≈ 2000) as input. 
When using an image pyramid, each RoI is assigned to the scale 
such that the scaled RoI is closest to 45x30 pixels in area. For 
each test RoI r, the forward pass outputs a class posterior 
probability distribution p and a set of predicted bounding-box 
offsets relative to r (each of the K classes gets its own refined 
bounding-box prediction). A detection confidence 𝑝𝑟  is 
assigned to r for each object class k using the estimated 
probability 𝑝𝑘. 

IV. IMPROVED FAST RCNN 

Two modifications are made to Fast RCNN in order to improve 
the accuracy and speed of Fast RCNN. Modification made for 
Accuracy is named as Fast RCNN type 2 while Modification 
made for Speed is named as Fast RCNN type 3. 

A. Fast RCNN type 2 - Accuracy Improvement 

Original Fast RCNN having only two convolutional layers is 
shown in fig. 3 (top) while the modification made for accuracy 
in the form of additional convolutional layer is shown in fig 3 
(bottom), encircled and highlighted. 

 

Fig. 3. Modification made to Fast RCNN for Accuracy 

B. Fast RCNN type 3 - Speed Improvement 

Original Fast RCNN having input channel  size 3 (RGB) is  
shown in fig. 4 (top) while the modification made for speed in 
the form of reduction of input channel size to one (grayscale) 
shown in fig. 4 (bottom), encircled and highlighted. 

 

Fig. 4. Modification made to Fast RCNN for Speed 

V. EXPERIMENTS AND RESULTS 

A. DataSet 

Dataset 03: OSU Thermal Database of OTCBVS Benchmark 
Dataset Collection [19] has been used for experiment. The 
dataset comprises of Thermal (Infrared) Images of two 
locations. Further each location has been divided into 3 subsets. 
Location 1 having subsets 1, 2 and 3 and location 2 having 
subsets 4, 5, 6. There are total 8544 grayscale bitmap images all 
of which have dimension equal to 320 x 240 pixels.  The dataset 
has total 23210 RoIs i.e. pedestrians. 

 

TABLE I. OTCBVS THERMAL DATASET 03: IMAGES AND ROIS 
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Location 
Sequence 

No. 
No. of Images 

(train/test) 

No. of 
Pedestraians_RoI 

(train/test) 

Loc-1 

1 1054   (843/211) 6981   (5581/1400) 

2 601     (480/121) 2947   (2353/594) 

3 1700   (1360/340) 8791   (7028/1763) 

Loc-2 

4 1506   (1205/301) 745     (595/150) 

5 2031   (1624/407) 2638   (2110/528) 

6 1652   (1321/331) 1108   (886/222) 

DataSet Total 85433 (6833/1711) 23210 (18533/4657) 

Out of 8544 images having 23210 pedestrians, 80% (6833 
images having 18533 pedestrians) of the dataset are used for 
training and remaining 20% (1711 images having 4657 
pedestrians) are used for testing the detector.  

  

  

Fig. V. OTCBVS OSU Thermal Database 03 

B. Experimental Setup 

Fast RCNN code is implemented using Mathworks MATLAB 
2017a. As Deep Learning needs a powerful processor, a GPU 
is required to run the algorithm or it would take days to train 
and test a simple algorithm even with a small dataset. For this 
experiment NVIDIA GeForce GT 740 GPU is used which has 
Compute capability of 3.0 and memory equal to 1 GB. 

C. Network Layers 

FastRCNN Type 1 has a total of 11 layers comprising of Input 
layer, Sevral convolution followed by ReLu, Fully connected 
layers Softmax classifier and Output layer. The detail about the 
layers is given in the Table II. 

FastRCNN Type 2 all the layers of type 1 FastRCNN but with 
an additional 3rd Convolution Layer followed by ReLu layer 
which makes total of 13 layers as shown in Table III. 

FastRCNN Type 3 has a total of 11 layers, same as type 1 
FastRCNN but with a little modification of input channel size, 
instead of 3 channel input 1 channel has been used (input size 
= 32x32x1) See Table IV for Layers details. 

D. Training Options 

The following training options are used to train the network. 

 Optimization Algorith: SGDM with momentum of 0.9 

 Initial Learn Rate: 1.e-06 

 Max Epoch: 32 

 Mini Batch size: 128 

TABLE II. TYPE 1 FAST RCNN LAYERS 

Layer Name Layer Description 

1. Input Layer 
32x32x3 images with 'zerocenter' 
normalization 

2. Convolution Layer 
32 filters, Kernel Size 3x3, with stride [1  1] 

and padding [1  1] 

3. ReLu Layer ReLU 

4. Convolution Layer 
32 filters, Kernel Size 3x3, with stride [1  1] 
and padding [1  1] 

5. ReLu Layer ReLU 

6. Max Pooling Layer 
3x3 max pooling with stride [2  2] and 

padding [0  0] 

7. Fully Connected 

Layer 
64 fully connected layer 

8. ReLu Layer ReLU 

9. Fully Connected 
Layer 

3 fully connected layer 

10. Softmax Layer softmax 

11. Classification Output 

Layer 

cross_entropyex with classes 'Ped' and 

'Background' 

 

TABLE III. TYPE 2 FASTRCNN LAYERS 

Layer Name Layer Description 

1. Input Layer 
32x32x3 images with 'zerocenter' 

normalization 

2. Convolution Layer 
32 filters, Kernel Size 3x3, with stride [1  1] 
and padding [1  1] 

3. ReLu Layer ReLU 

4. Convolution Layer 
32 filters, Kernel Size 3x3, with stride [1  1] 

and padding [1  1] 

5. ReLu Layer ReLU 

6. Convolution Layer 
32 filters, Kernel Size 3x3, with stride [1  

1] and padding [1  1] 

7. ReLu Layer ReLU 

8. Max Pooling Layer 
3x3 max pooling with stride [2  2] and 
padding [0  0] 

9. Fully Connected 

Layer 
64 fully connected layer 

10. ReLu Layer ReLU 

11. Fully Connected 

Layer 
3 fully connected layer 

12. Softmax Layer softmax 

13. Classification Output 
Layer 

cross_entropyex with classes 'Ped' and 
'Background' 

 

TABLE IV. TYPE 3 FASTRCNN LAYERS 

Layer Name Layer Description 

1. Input Layer 
32x32x1 images with 'zerocenter' 

normalization 

2. Convolution Layer 
32 filters, Kernel Size 3x3, with stride [1  

1] and padding [1  1] 

3. ReLu Layer ReLU 

4. Convolution Layer 
32 filters, Kernel Size 3x3 with stride [1  1] 
and padding [1  1] 

5. ReLu Layer ReLU 

6. Max Pooling Layer 
3x3 max pooling with stride [2  2] and 

padding [0  0] 

7. Fully Connected 

Layer 
64 fully connected layer 

8. ReLu Layer ReLU 

9. Fully Connected 
Layer 

3 fully connected layer 

10. Softmax Layer softmax 

11. Classification Output 

Layer 

cross_entropyex with classes 'Ped' and 

'Background' 
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After generation of RoIs by using edge boxes algorithm (as 
shown in Fig. 6), the detector is trained using positive instances 
i.e. only those RoI are considered by the network for training 
whose boundary box has and IoU of 0.7 with the ground truth 
while the remaining RoIs which are labeled as background 
during the process are left out. 

  

  

Fig. 6. RoI (Positive and Background Instances) 

E. Detection 

After separately training the detectors for all the subset of the 
dataset, the detectors are tested on test data. The results are 
shown in Tables V,VI,VII and VIII. 

1) Fast RCNN Type 1 vs RCNN 

The Detection percentage of FastRCNN and RCNN is shown 
in table V. While the time taken by training and testing 
calculated in seconds is shown in table VI. 

TABLE V. TYPE 1 FASTRCNN VS RCNN DETECTION RATE 

Subset 
Number 

No. of Test 
Images 

No. of 
Pedestrians 

(RoI) 

Detection % 

Fast 
RCNN_T1 

RCNN 

1 211 1400 51.3571 48.6428 

2 121 594 41.9192 36.8686 

3 340 1763 34.7136 25.5813 

4 301 150 90.6670 81.3333 

5 407 528 85.4167 78.9772 

6 331 222 58.1080 55.8558 
Total 1711 4657 60.3636 54.54318 

 

 

TABLE VI. TYPE 1 FAST RCNN VS RCNN TRAINING AND TESTING SPEED 

Subset 
Number 

Training Speed (sec) Testing Speed (sec) 

Fast 
RCNN_T1 

RCNN Fast 
RCNN_T1 

RCNN 

1 765.751641 2122.318721 32.204502 84.0363340 

2 138.760579 405.5073566 18.683158 47.9111250 

3 638.202716 1803.784265 47.237358 126.350541 

4 659.863006 2913.374721 36.559944 84.4541700 

5 823.980966 3137.592315 52.764089 133.193406 

6 264.390669 1404.776525 43.299481 102.494498 
Avg_Time 

(sec) 
548.491596 1964.558984 38.458089 96.4066790 

 

The difference in detection rate in table V clearly indicates that 
the softmax classifier of Fast RCNN outperformed the SVM 
classifier of RCNN while from table VI it is evident that by 
processing the whole image first with several convolutional and 
max pooling layers to produce a conv feature map and later by 
using RoI pooling layer to extract fixed length feature vector 
from the feature map speeded up the detection process. 

2) FastRCNN Type 2 

The training and testing time along with detection percentage 
of FastRCNN type 2 is shown in table 5-7. 

TABLE VII. TYPE 2 FASTRCNN RESULTS 

Subset 
Number 

Training Speed 
(sec) 

Test Speed 
(sec) 

Detection 
% 

1 1161.83180 34.935577 55.6571 

2 198.836582 20.021811 57.6082 

3 966.818034 52.029601 35.3375 

4 994.594042 39.964303 92.0000 

5 1238.99810 57.309426 81.8182 

6 377.540465 47.045292 58.1081 

average 823.103172 41.884335 63.4215 

 

Table VII detection column shows that modification made as 
an introduction of extra convolution layer to the architecture as 
shown in fig. 3, helped the network to learn more by extracting 
additional features, which improved the detection rate from 
60.36% to 63.42%. 

3) FastRCNN Type 3 

The training and testing time along with detection percentage 
of FastRCNN type 3 is shown in table VIII. 

TABLE VIII TYPE 3 FASTRCNN RESULTS 

Subset 
Number 

Training Speed 
(sec) 

Test Speed 
(sec) 

Detection 
% 

1 752.862071 31.951306 43.7857 

2 137.893466 18.584171 39.5623 

3 630.406242 47.102926 45.7486 

4 649.081506 36.508590 76.6667 

5 800.540570 52.274447 65.5303 

6 259.201657 43.200784 57.6577 

average 538.3309187 38.27037067 54.8252 

 

The advantage of using infrared image dataset for pedestrian 
detection is evident from the values of training and testing 
speed columns of table VIII. Lack of color information in 
infrared images lead to the modification as reduction of input 
channel from three (RGB) to one (grayscale) as shown in fig. 4 
which helped in speeding up the whole process. 

F. Results 

1) Detection 

Comparing the detection percentage of all algorithms for 4657 
test pedestrians FastRCNN Type 2 has better detection rate with 
an average of 63.42% , followed by FastRCNN Type 1 which 
has detection rate of 60.36%. The least accurate is RCNN 
having detection rate of 54.54%. (see fig. 7) 
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Fig. 7. Detection Percentages Comparison 

 

 

Fig. 8. Training Time Comparison 

 

 

Fig.9. Test Time Comparison 

2) Training Speed 

Comparing training speed of all algorithms for 6833 training 
images having 18533 training pedestrians FastRCNN Type 3 
is faster of all having average elapsed time of 538.33 sec, 
followed by Fast RCNN type 1 with 548.49 sec. The slowest 
(time consuming) is RCNN with 1964.55 sec. (see fig. 8) 

3) Test Speed 

Comparing Test speed of all algorithms for 1711 test images 
with 4657 test pedestrians FastRCNN Type 3 is faster of all 
having an average elapsed time of 38.27 sec, followed by 
FastRCNN type1 with 38.45 sec. RCNN with 96.40 is the 
most time consuming algorithm. (see fig. 9) 
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4) Detection Figures 

After training the detector using the parameters given in 
section V.D figure 10 shows the detection results in which 
green boundary boxes indicates the detector has correctly 
detected a pedestrian while yellow boundary box shows that 
the detector has miss classified the pedestrian as non-
pedestrian.  

  

  
Fig. 10. Detection Results 

VI. CONCLUSION 

Taking advantage of characteristics that infrared images 
possess, Infrared images are used for pedestrian detection 
using Fast RCNN with a small network architecture having 
better accuracy and time as compared to RCNN. Furthermore 
the performance of Fast RCNN has been improved by two 
modifications made to the architecture, one for accuracy in 
which an extra convolutional layer was added to the the 
network and other for speed in which the input channel was 
reduced from three channel input to one.  
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