
Pedestrian Detection in Infrared Images Using

FastRCNN
Asad Ullah (Author)
Information Engineering

School
Chang’An University

Xi’an, 710064
P.R of China,

Asad_uop92@yahoo.com

Farooq Muhammad

Omer (Co-Author)

Department of

Electronics

University of Peshawar,

25000, Pakistan,

omer908@yahoo.com

Xie H.M

School of Electronics and

Information

NWPU, Xi’an, 710072,

P.R of China,

xiehm@nwpu.edu.cn

Sun Zhaoyun,
Information Engineering

School
Chang’An University

Xi’an, 710064
P.R of China,

mahw@xust.edu.cn

Abstract—Compared to visible spectrum image the infrared

image is much clearer in poor lighting conditions. Infrared

imaging devices are capable to operate even without the

availability of visible light, acquires clear images of objects which

are helpful in efficient classification and detection. For image

object classification and detection, CNN which belongs to the class

of feed-forward ANN, has been successfully used. Fast RCNN

combines advantages of modern CNN detectors i.e. RCNN and

SPPnet to classify object proposals more efficiently, resulting in

better and faster detection. To further improve the detection rate

and speed of Fast RCNN, two modifications are proposed in this

paper. One for accuracy in which an extra convolutional layer is

added to the network and named it as Fast RCNN type 2, other for

speed in which the input channel is reduced from three channel

input to one and named as Fast RCNN type 3.
Fast RCNN type 1 (original Fast RCNN) has better detection
rate than RCNN (60.3636 : 54.54318), with 3.5 x RCNN training
and 2.5 x RCNN test speed. Compare to Fast RCNN, Fast RCNN
type 2 has better detection rate (63.42% : 60.36%) while Fast
RCNN type 3 is faster (having 1.018 x FastRCNN training and
1.04 x FastRCNN test speed).

Keywords—ANN, CNN, Overfeat, SPPnet, RCNN, Fast RCNN.

I. INTRODUCTION

Pedestrian detection is an extensively studied research area in
image processing due to its importance for practical application.
In image processing, as compared to visible spectrum image the
infrared image is much clearer in poor lighting conditions.
Infrared imaging devices are capable of operating even without
the availability of visible light. The fast-improving functioning
and decreasing prices have spurred speedy expansion in
infrared cameras usage in a wide range of areas with varied
capabilities. Infrared Image processing has numerous
applications and great research value in industrial, scientific,
and medical fields. E.g. automatic detection of targets through
infrared devices has been widely used in civil and military
domains and forms the basis for infrared search and track
(IRST) [1] [2]. In the civil domain, video surveillance and smart
vehicle driver assistance mostly use infrared technology.
Pedestrian detection systems can be implemented in vehicles to
automatically brake a vehicle to avoid striking a pedestrian [3]
[4]. Pedestrian detection and recognition is an important part of
intelligent monitoring system, hence becoming an actively
growing research area in computer vision.

Conventional methods for pedestrian detection [5] [6] [7]
consist of feature extraction, which is manually designed, and
trained classification, which is based on machine learning

techniques. In particularly, feature design requires human
knowledge to ensure robustness. To overcome this problem,
deep learning-based approaches have attracted attention
recently. Deep learning, especially in CNN, has excellent
feature representation and classification abilities. Krizhevsky
has shown the potential of CNN on 1000 class object
recognition benchmark (ILSVRC) [8] . After this breakthrough,
Deep Learning approaches have been applied to many
problems, such as house number recognition, scene labeling,
object classification and detection.

II. RELATED WORK

In 2014 an integrated framework was proposed by Pierre
Sermanet et al by using Convolutional Network for
classification, localization and detection simultaneously [9].
This new methodology for localization and detection by
collecting projected enclosing boxes depicted that integrating
various localization calculations, detection is possible without
the requirement of training on background samples. It also
showed that lengthy and complex bootstrapping training passes
are avoidable which allows the network to be focused on
positive classes only. Later in 2014, Region Based Convolution
Neural Network (R-CNN) was proposed by Ross Girshick et al
[10] in which they used 2000 category independent region
proposals generated for the input image, a fixed-length feature
vector was extracted from each proposal using CNN which then
classified each region with category-specific linear SVMs. To
compute a fixed-size CNN input from each region proposal
“affine image wrapping” is used, regardless of the region’s
shape. This warpping of the content sometimes results in
unwanted distortion. Recognition accuracy is decreased due to
the content loss or distortion. Besides, a pre-defined scale may
not be suitable when object scales vary. To solve this problem,
Kaiming He et al in 2015 introduced Spatial Pyramid Pooling
Layer to CNNs to remove the fixed size constraint and named
it SPPnet [11] in which the convolutional layers accept arbitrary
input sizes but they produce outputs of variable sizes. The
classifiers (SVM/Softmax) or fully-connected layers requires
fixed-length vectors. Such vectors can be generated by the Bag-
of-Words (BoW) approach [12], that pools the features
together. Spatial pyramid pooling [13] improves BoW in which
it maintains spatial information by pooling in local spatial bins.
These spatial bins have sizes proportional to the image size,
keeping the number of bins fixed regardless of the image size.
Considering the advantages RCNN and SPPnet, Ross Grishick
in 2015 proposed Fast RCNN [14], a combined version of

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 46

mailto:Asad_uop92@yahoo.com
mailto:omer908@yahoo.com
mailto:xiehm@nwpu.edu.cn

RCNN [10] and SPPnet [11] which efficiently classifies object
proposals using deep convolutional networks.

III. FAST RCNN

A Fast R-CNN network takes as input an entire image and a set
of object proposals generated by region proposal network as
input [15]. The network first processes the whole image with
several convolutional and max pooling layers to produce a conv
feature map. Then, for each object proposal a region of interest
(RoI), pooling layer extracts a fixed-length feature vector from
the feature map. Each feature vector is fed into a sequence of
fully connected (fc) layers that finally branch into two sibling
output layers One that produces softmax probability estimates
over K object classes plus a catch-all “background” class and
Another layer that outputs four real-valued numbers for each of
the K object classes. Each set of 4 values encodes refined
bounding-box positions for one of the K classes. (See figure
below).

Fig.1. Overview of Fast RCNN

A. Region Proposal

A variety of methods are available for generating category-
independent region proposals such as Selective search [16],
Objectness [17] and category-independent object proposals
[18] etc. Fast RCNN uses selective search ‘Edge Boxes’
locating object proposal [15] method to generate RoI from
edges within an image.

Fig. 2. An illustration of random bboxes with IoU of 0.5, 0.7, and 0.9

a bounding box is typically measured using the Intersection
over Union (IoU) metric. IoU computes the intersection of a
candidate box and the ground truth box divided by the area of
their union. IoU scores of greater than 0.5 are generally desired.
An IoU of 0.7 provides a reasonable compromise between very
loose (IoU of 0.5) and very strict (IoU of 0.9) overlap values.

B. RoI Pooling

The RoI pooling layer uses max pooling to convert the features
inside any valid region of interest into a small feature map with
a fixed spatial extent of H ×W (e.g., 7 × 7), where H and W are
layer hyper-parameters that are independent of any particular
RoI. RoI is a rectangular window into a conv feature map as

shown in fig.1 by RoI-Projection. Each RoI is defined by a four
values (r, c, h, w) that specifies its top-left corner (r, c) and its
height and width (h, w).

C. Training

Fast R-CNN uses a streamlined training process with one fine-
tuning stage that jointly optimizes a softmax classifier and
bounding-box regressors, rather than training a softmax
classifier, SVMs, and regressors in three separate stages. The
components of this procedure are the loss, mini-batch sampling
strategy, back-propagation through RoI pooling layers, and
SGD hyper-parameters.

1) Multi-task loss

A Fast R-CNN network has two sibling output layers. The first
outputs a discrete probability distribution (per RoI), 𝑝 =
(𝑝0, … … … , 𝑝𝑘) , over 𝐾 + 1 categories. As usual, p is
computed by a softmax over the 𝐾 + 1 outputs of a fully
connected layer. The second sibling layer outputs bounding-

box regression offsets, 𝑡𝑘 = (𝑡𝑥
𝑘 , 𝑡𝑦

𝑘, 𝑡𝑤
𝑘 , 𝑡ℎ

𝑘), for each of the K

object classes, indexed by k. The parameterization for 𝑡𝑘
specifies a scale-invariant translation and log-space
height/width shift relative to an object proposal. Each training
RoI is labeled with a ground-truth class u and a ground-truth
bounding-box regression target v. Multi-task loss L on each
labeled RoI to jointly train for classification and bounding-box
regression:

𝐿(𝑝, 𝑢, 𝑡𝑢, 𝑣) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) (1)

In which 𝐿𝑐𝑙𝑠(𝑝, 𝑢) = − log 𝑝𝑢 is log loss for true class u. The
second task loss, 𝐿𝑙𝑜𝑐 , is defined over a tuple of true bounding-
box regression targets for class 𝑢, 𝑣 = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑤 , 𝑣ℎ) , and a

predicted 𝑡𝑢 = (𝑡𝑥
𝑢, 𝑡𝑦

𝑢, 𝑡𝑤
𝑢 , 𝑡ℎ

𝑢) , again for class 𝑢. The Iverson

bracket indicator function[𝑢 ≥ 1] evaluates to 1 when [𝑢 ≥ 1]
and 0 otherwise. By convention the catch-all background class
is labeled 𝑢 = 0. For background RoIs there is no notion of a
ground-truth bounding box and hence 𝐿𝑙𝑜𝑐 is ignored. For
bounding-box regression, we use the loss

𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) = ∑ 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑡𝑖

𝑢 −

𝑖𝜖{𝑥,𝑦,𝑤,ℎ}

𝑣𝑖)
(2)

In which

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) = {

0.5𝑥2 𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(3)

is a robust 𝐿1 loss that is less sensitive to outliers than the 𝐿2
loss used in R-CNN and SPPnet. When the regression targets
are unbounded, training with 𝐿2 loss can require careful tuning
of learning rates in order to prevent exploding gradients. Eq. 3
eliminates this sensitivity. The hyper-parameter 𝜆 in Eq. 1
controls the balance between the two task losses. We normalize
the ground-truth regression targets 𝑣𝑖 to have zero mean and
unit variance. All experiments use = 1 .

2) Mini-batch sampling

During fine-tuning, each SGD mini-batch is constructed from
N = 2 images, chosen uniformly at random (as is common
practice, which actually is iterated over permutations of the
dataset). Mini-batches of size R = 128, sampling 64 RoIs is used

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 47

from each image. Total of 25% of the RoIs from object
proposals that have intersection over union (IoU) overlap with
a groundtruth bounding box of at least 0.5 are chosen. These
RoIs comprise the examples labeled with a foreground object
class, i.e. [𝑢 ≥ 1] . The remaining RoIs are sampled from
object proposals that have a maximum IoU with ground truth in
the interval [0.1, 0.5) . These are the background examples and
are labeled with 𝑢 = 0 . During training, images are
horizontally flipped with probability 0.5. No other data
augmentation is used.

3) Back-propagation through RoI pooling layers

Backpropagation routes derivatives through the RoI pooling
layer. Let 𝑥𝑖 ∈ ℝ be the i-th activation input into the RoI
pooling layer and let 𝑦𝑟𝑗 be the layer’s j-th output from the r- th

RoI. The RoI pooling layer computes 𝑦𝑟𝑗 = 𝑥𝑖∗(𝑟,𝑗), in which

𝑖 ∗ (𝑟, 𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖′∗(𝑟,𝑗)𝑥𝑖′ . 𝑅(𝑟,𝑗) is the index set of inputs in

the sub-window over which the output unit 𝑦𝑟𝑗 max pools. A

single 𝑥𝑖 may be assigned to several different outputs 𝑦𝑟𝑗 .

The RoI pooling layer’s backwards function computes partial
derivative of the loss function with respect to each input
variable xi by following the argmax switches:

𝜕𝐿

𝜕𝑥𝑖

= ∑ ∑[𝑖 = 𝑖 ∗ (𝑟, 𝑗)]
𝜕𝐿

𝜕𝑦𝑟𝑗
𝑗𝑟

(4)

In words, for each mini-batch RoI r and for each pooling output

unit 𝑦𝑟𝑗 , the partial derivative
𝜕𝐿

𝜕𝑦𝑟𝑗
 is accumulated if i is the

argmax selected for 𝑦𝑟𝑗 by max pooling. In back-propagation,

the partial derivatives
𝜕𝐿

𝜕𝑦𝑟𝑗
 are already computed by the

backwards function of the layer on top of the RoI pooling layer.

4) SGD hyper-parameters.

The fully connected layers used for softmax classification and
bounding-box regression are initialized from zero-mean
Gaussian distributions with standard deviations 0.01 and 0.001,
respectively. Biases are initialized to 0. All layers use a per-
layer learning rate of 1 for weights and 2 for biases and a global
learning rate of 0.001.

D. Scale invariance

To achieving scale invariant object detection image pyramids is
used which provides approximate scale-invariance to the
network through an image pyramid. At test-time, the image
pyramid is used to approximately scale-normalize each object
proposal.

E. Detection

Once a Fast R-CNN network is fine-tuned, the network takes as
input an image and a list of R object proposals (≈ 2000) as input.
When using an image pyramid, each RoI is assigned to the scale
such that the scaled RoI is closest to 45x30 pixels in area. For
each test RoI r, the forward pass outputs a class posterior
probability distribution p and a set of predicted bounding-box
offsets relative to r (each of the K classes gets its own refined
bounding-box prediction). A detection confidence 𝑝𝑟 is
assigned to r for each object class k using the estimated
probability 𝑝𝑘.

IV. IMPROVED FAST RCNN

Two modifications are made to Fast RCNN in order to improve
the accuracy and speed of Fast RCNN. Modification made for
Accuracy is named as Fast RCNN type 2 while Modification
made for Speed is named as Fast RCNN type 3.

A. Fast RCNN type 2 - Accuracy Improvement

Original Fast RCNN having only two convolutional layers is
shown in fig. 3 (top) while the modification made for accuracy
in the form of additional convolutional layer is shown in fig 3
(bottom), encircled and highlighted.

Fig. 3. Modification made to Fast RCNN for Accuracy

B. Fast RCNN type 3 - Speed Improvement

Original Fast RCNN having input channel size 3 (RGB) is
shown in fig. 4 (top) while the modification made for speed in
the form of reduction of input channel size to one (grayscale)
shown in fig. 4 (bottom), encircled and highlighted.

Fig. 4. Modification made to Fast RCNN for Speed

V. EXPERIMENTS AND RESULTS

A. DataSet

Dataset 03: OSU Thermal Database of OTCBVS Benchmark
Dataset Collection [19] has been used for experiment. The
dataset comprises of Thermal (Infrared) Images of two
locations. Further each location has been divided into 3 subsets.
Location 1 having subsets 1, 2 and 3 and location 2 having
subsets 4, 5, 6. There are total 8544 grayscale bitmap images all
of which have dimension equal to 320 x 240 pixels. The dataset
has total 23210 RoIs i.e. pedestrians.

TABLE I. OTCBVS THERMAL DATASET 03: IMAGES AND ROIS

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 48

Location
Sequence

No.
No. of Images

(train/test)

No. of
Pedestraians_RoI

(train/test)

Loc-1

1 1054 (843/211) 6981 (5581/1400)

2 601 (480/121) 2947 (2353/594)

3 1700 (1360/340) 8791 (7028/1763)

Loc-2

4 1506 (1205/301) 745 (595/150)

5 2031 (1624/407) 2638 (2110/528)

6 1652 (1321/331) 1108 (886/222)

DataSet Total 85433 (6833/1711) 23210 (18533/4657)

Out of 8544 images having 23210 pedestrians, 80% (6833
images having 18533 pedestrians) of the dataset are used for
training and remaining 20% (1711 images having 4657
pedestrians) are used for testing the detector.

Fig. V. OTCBVS OSU Thermal Database 03

B. Experimental Setup

Fast RCNN code is implemented using Mathworks MATLAB
2017a. As Deep Learning needs a powerful processor, a GPU
is required to run the algorithm or it would take days to train
and test a simple algorithm even with a small dataset. For this
experiment NVIDIA GeForce GT 740 GPU is used which has
Compute capability of 3.0 and memory equal to 1 GB.

C. Network Layers

FastRCNN Type 1 has a total of 11 layers comprising of Input
layer, Sevral convolution followed by ReLu, Fully connected
layers Softmax classifier and Output layer. The detail about the
layers is given in the Table II.

FastRCNN Type 2 all the layers of type 1 FastRCNN but with
an additional 3rd Convolution Layer followed by ReLu layer
which makes total of 13 layers as shown in Table III.

FastRCNN Type 3 has a total of 11 layers, same as type 1
FastRCNN but with a little modification of input channel size,
instead of 3 channel input 1 channel has been used (input size
= 32x32x1) See Table IV for Layers details.

D. Training Options

The following training options are used to train the network.

 Optimization Algorith: SGDM with momentum of 0.9

 Initial Learn Rate: 1.e-06

 Max Epoch: 32

 Mini Batch size: 128

TABLE II. TYPE 1 FAST RCNN LAYERS

Layer Name Layer Description

1. Input Layer
32x32x3 images with 'zerocenter'
normalization

2. Convolution Layer
32 filters, Kernel Size 3x3, with stride [1 1]

and padding [1 1]

3. ReLu Layer ReLU

4. Convolution Layer
32 filters, Kernel Size 3x3, with stride [1 1]
and padding [1 1]

5. ReLu Layer ReLU

6. Max Pooling Layer
3x3 max pooling with stride [2 2] and

padding [0 0]

7. Fully Connected

Layer
64 fully connected layer

8. ReLu Layer ReLU

9. Fully Connected
Layer

3 fully connected layer

10. Softmax Layer softmax

11. Classification Output

Layer

cross_entropyex with classes 'Ped' and

'Background'

TABLE III. TYPE 2 FASTRCNN LAYERS

Layer Name Layer Description

1. Input Layer
32x32x3 images with 'zerocenter'

normalization

2. Convolution Layer
32 filters, Kernel Size 3x3, with stride [1 1]
and padding [1 1]

3. ReLu Layer ReLU

4. Convolution Layer
32 filters, Kernel Size 3x3, with stride [1 1]

and padding [1 1]

5. ReLu Layer ReLU

6. Convolution Layer
32 filters, Kernel Size 3x3, with stride [1

1] and padding [1 1]

7. ReLu Layer ReLU

8. Max Pooling Layer
3x3 max pooling with stride [2 2] and
padding [0 0]

9. Fully Connected

Layer
64 fully connected layer

10. ReLu Layer ReLU

11. Fully Connected

Layer
3 fully connected layer

12. Softmax Layer softmax

13. Classification Output
Layer

cross_entropyex with classes 'Ped' and
'Background'

TABLE IV. TYPE 3 FASTRCNN LAYERS

Layer Name Layer Description

1. Input Layer
32x32x1 images with 'zerocenter'

normalization

2. Convolution Layer
32 filters, Kernel Size 3x3, with stride [1

1] and padding [1 1]

3. ReLu Layer ReLU

4. Convolution Layer
32 filters, Kernel Size 3x3 with stride [1 1]
and padding [1 1]

5. ReLu Layer ReLU

6. Max Pooling Layer
3x3 max pooling with stride [2 2] and

padding [0 0]

7. Fully Connected

Layer
64 fully connected layer

8. ReLu Layer ReLU

9. Fully Connected
Layer

3 fully connected layer

10. Softmax Layer softmax

11. Classification Output

Layer

cross_entropyex with classes 'Ped' and

'Background'

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 49

After generation of RoIs by using edge boxes algorithm (as
shown in Fig. 6), the detector is trained using positive instances
i.e. only those RoI are considered by the network for training
whose boundary box has and IoU of 0.7 with the ground truth
while the remaining RoIs which are labeled as background
during the process are left out.

Fig. 6. RoI (Positive and Background Instances)

E. Detection

After separately training the detectors for all the subset of the
dataset, the detectors are tested on test data. The results are
shown in Tables V,VI,VII and VIII.

1) Fast RCNN Type 1 vs RCNN

The Detection percentage of FastRCNN and RCNN is shown
in table V. While the time taken by training and testing
calculated in seconds is shown in table VI.

TABLE V. TYPE 1 FASTRCNN VS RCNN DETECTION RATE

Subset
Number

No. of Test
Images

No. of
Pedestrians

(RoI)

Detection %

Fast
RCNN_T1

RCNN

1 211 1400 51.3571 48.6428

2 121 594 41.9192 36.8686

3 340 1763 34.7136 25.5813

4 301 150 90.6670 81.3333

5 407 528 85.4167 78.9772

6 331 222 58.1080 55.8558
Total 1711 4657 60.3636 54.54318

TABLE VI. TYPE 1 FAST RCNN VS RCNN TRAINING AND TESTING SPEED

Subset
Number

Training Speed (sec) Testing Speed (sec)

Fast
RCNN_T1

RCNN Fast
RCNN_T1

RCNN

1 765.751641 2122.318721 32.204502 84.0363340

2 138.760579 405.5073566 18.683158 47.9111250

3 638.202716 1803.784265 47.237358 126.350541

4 659.863006 2913.374721 36.559944 84.4541700

5 823.980966 3137.592315 52.764089 133.193406

6 264.390669 1404.776525 43.299481 102.494498
Avg_Time

(sec)
548.491596 1964.558984 38.458089 96.4066790

The difference in detection rate in table V clearly indicates that
the softmax classifier of Fast RCNN outperformed the SVM
classifier of RCNN while from table VI it is evident that by
processing the whole image first with several convolutional and
max pooling layers to produce a conv feature map and later by
using RoI pooling layer to extract fixed length feature vector
from the feature map speeded up the detection process.

2) FastRCNN Type 2

The training and testing time along with detection percentage
of FastRCNN type 2 is shown in table 5-7.

TABLE VII. TYPE 2 FASTRCNN RESULTS

Subset
Number

Training Speed
(sec)

Test Speed
(sec)

Detection
%

1 1161.83180 34.935577 55.6571

2 198.836582 20.021811 57.6082

3 966.818034 52.029601 35.3375

4 994.594042 39.964303 92.0000

5 1238.99810 57.309426 81.8182

6 377.540465 47.045292 58.1081

average 823.103172 41.884335 63.4215

Table VII detection column shows that modification made as
an introduction of extra convolution layer to the architecture as
shown in fig. 3, helped the network to learn more by extracting
additional features, which improved the detection rate from
60.36% to 63.42%.

3) FastRCNN Type 3

The training and testing time along with detection percentage
of FastRCNN type 3 is shown in table VIII.

TABLE VIII TYPE 3 FASTRCNN RESULTS

Subset
Number

Training Speed
(sec)

Test Speed
(sec)

Detection
%

1 752.862071 31.951306 43.7857

2 137.893466 18.584171 39.5623

3 630.406242 47.102926 45.7486

4 649.081506 36.508590 76.6667

5 800.540570 52.274447 65.5303

6 259.201657 43.200784 57.6577

average 538.3309187 38.27037067 54.8252

The advantage of using infrared image dataset for pedestrian
detection is evident from the values of training and testing
speed columns of table VIII. Lack of color information in
infrared images lead to the modification as reduction of input
channel from three (RGB) to one (grayscale) as shown in fig. 4
which helped in speeding up the whole process.

F. Results

1) Detection

Comparing the detection percentage of all algorithms for 4657
test pedestrians FastRCNN Type 2 has better detection rate with
an average of 63.42% , followed by FastRCNN Type 1 which
has detection rate of 60.36%. The least accurate is RCNN
having detection rate of 54.54%. (see fig. 7)

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 50

Fig. 7. Detection Percentages Comparison

Fig. 8. Training Time Comparison

Fig.9. Test Time Comparison

2) Training Speed

Comparing training speed of all algorithms for 6833 training
images having 18533 training pedestrians FastRCNN Type 3
is faster of all having average elapsed time of 538.33 sec,
followed by Fast RCNN type 1 with 548.49 sec. The slowest
(time consuming) is RCNN with 1964.55 sec. (see fig. 8)

3) Test Speed

Comparing Test speed of all algorithms for 1711 test images
with 4657 test pedestrians FastRCNN Type 3 is faster of all
having an average elapsed time of 38.27 sec, followed by
FastRCNN type1 with 38.45 sec. RCNN with 96.40 is the
most time consuming algorithm. (see fig. 9)

5
5

.6
5

7
1

5
7

.6
0

8
2

3
5

.3
3

7
5

9
2

8
1

.8
1

8
2

5
8

.1
0

8
1

6
3

.4
2

1
5

5
1

.3
5

7
1

4
1

.9
1

9
2

3
4

.7
1

3
6

9
0

.6
6

7

8
5

.4
1

6
7

5
8

.1
0

8

6
0

.3
6

3
6

4
3

.7
8

5
7

3
9

.5
6

2
3

4
5

.7
4

8
6 7

6
.6

6
6

7

6
5

.5
3

0
3

5
7

.6
5

7
7

5
4

.8
2

5
2

4
8

.6
4

2
8

3
6

.8
6

8
6

2
5

.5
8

1
3

8
1

.3
3

3
3

7
8

.9
7

7
2

5
5

.8
5

5
8

5
4

.5
4

3
1

8

1 2 3 4 5 6 A V E R A G E

P
ER

C
EN

TA
G

E

SUBSET NUMBER

DET EC T IO N P ER C ENT AGES FastRCNN_T2
FastRCNN_T1
FastRCNN_T3
RCNN

1
1

6
1

.8
3

1
8

1
9

8
.8

3
6

5
8

2

9
6

6
.8

1
8

0
3

4

9
9

4
.5

9
4

0
4

2

1
2

3
8

.9
9

8
1

3
7

7
.5

4
0

4
6

5

8
2

3
.1

0
3

1
7

2

7
6

5
.7

5
1

6
4

1

1
3

8
.7

6
0

5
7

9

6
3

8
.2

0
2

7
1

6

6
5

9
.8

6
3

0
0

6

8
2

3
.9

8
0

9
6

6

2
6

4
.3

9
0

6
6

9

5
4

8
.4

9
1

5
9

6

7
5

2
.8

6
2

0
7

1

1
3

7
.8

9
3

4
6

6

6
3

0
.4

0
6

2
4

2

6
4

9
.0

8
1

5
0

6

8
0

0
.5

4
0

5
7

2
5

9
.2

0
1

6
5

7

5
3

8
.3

3
0

9
1

8
7

2
1

2
2

.3
1

8
7

2
1

4
0

5
.5

0
7

3
5

6
6

1
8

0
3

.7
8

4
2

6
5

2
9

1
3

.3
7

4
7

2
1

3
1

3
7

.5
9

2
3

1
5

1
4

0
4

.7
7

6
5

2
5

1
9

6
4

.5
5

8
9

8
4

1 2 3 4 5 6 A V G P E R
S U B S E T

TI
M

E
(S

EC
)

SUBSET NUMBER

T R AINING T IMEFastRCNN_T2

FastRCNN_T1

FastRCNN_T3

3
4

.9
3

5
5

7
7

2
0

.0
2

1
8

1
1

5
2

.0
2

9
6

0
1

3
9

.9
6

4
3

0
3

5
7

.3
0

9
4

2
6

4
7

.0
4

5
2

9
2

4
1

.8
8

4
3

3
5

3
2

.2
0

4
5

0
2

1
8

.6
8

3
1

5
8

4
7

.2
3

7
3

5
8

3
6

.5
5

9
9

4
4

5
2

.7
6

4
0

8
9

4
3

.2
9

9
4

8
1

3
8

.4
5

8
0

8
9

3
1

.9
5

1
3

0
6

1
8

.5
8

4
1

7
1

4
7

.1
0

2
9

2
6

3
6

.5
0

8
5

9

5
2

.2
7

4
4

4
7

4
3

.2
0

0
7

8
4

3
8

.2
7

0
3

7
0

6
7

8
4

.0
3

6
3

3
4

4
7

.9
1

1
1

2
5

1
2

6
.3

5
0

5
4

1

8
4

.4
5

4
1

7

1
3

3
.1

9
3

4
0

6

1
0

2
.4

9
4

4
9

8

9
6

.4
0

6
6

7
9

1 2 3 4 5 6 A V G P E R
S U B S E T

TI
M

E
(S

EC
)

SUBSET NUMBER

T ES T T IM EFastRCNN_T2
FastRCNN_T1
FastRCNN_T3
RCNN

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 51

4) Detection Figures

After training the detector using the parameters given in
section V.D figure 10 shows the detection results in which
green boundary boxes indicates the detector has correctly
detected a pedestrian while yellow boundary box shows that
the detector has miss classified the pedestrian as non-
pedestrian.

Fig. 10. Detection Results

VI. CONCLUSION

Taking advantage of characteristics that infrared images
possess, Infrared images are used for pedestrian detection
using Fast RCNN with a small network architecture having
better accuracy and time as compared to RCNN. Furthermore
the performance of Fast RCNN has been improved by two
modifications made to the architecture, one for accuracy in
which an extra convolutional layer was added to the the
network and other for speed in which the input channel was
reduced from three channel input to one.

REFERENCES

[1] Chaoxiang Chen, Wenshu Li, Hongting Li, Shiping Ye,

"A Novel Pedestrian Detection in Infrared Images,"

IJSSST, vol. 17, no. 28, 2016.

[2] Jiabao Wang,Yafei Zhang, Jianjiang Lu and Yang Li,
"Target Detection and Pedestrian Recognition in
Infrared Images," Journal of Computers, vol. 8, no. 4,
pp. 1050-1057, 2013.

[3] M Bertozzi · Alberto Broggi · Paolo Grisleri · T
Graf · M M Meinecke, "Pedestrian detection in infrared
images," Information Visualization, pp. 662-667, 2003.

[4] Lianna Chen, Wenshu Li, Zhengxi Xu, Limei Tang,
"Pedestrian Detection Based on ISC in Infrared
Images," in international conference on networking,
2012.

[5] Paul A Viola, Michael J Jones, "Robust real-time face
detection," international conference on computer
vision, vol. 57, no. 2, pp. 137-154, 2004.

[6] Navneet Dalal, Bill Triggs, "Histograms of oriented
gradients for human detection," in computer vision and
pattern recognition, 2005.

[7] Pedro F Felzenszwalb, David A Mcallester, Deva
Ramanan, "A discriminatively trained, multiscale,
deformable part model," in computer vision and
pattern recognition, 2008.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet
classification with deep convolutional neural
networks," in NIPS, Lake Tohe, 2012.

[9] Pierre Sermanet, David Eigen, Xiang Zhang, Michael
Mathieu, Rob Fergus, Yann LeCun, "OverFeat:
Integrated Recognition, Localization and Detection
using Convolutional Networks," in Computer Vision
and Pattern Recognition, 2014.

[10] Ross B Girshick · Jeff Donahue · Trevor
Darrell · Jitendra Malik, "Rich feature hierarchies for
accurate object detection and semantic segmentation,"
in computer vision and pattern recognition, 2014.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,
"Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition," in Computer Vision
and Pattern Recognition, 2014.

[12] J. Sivic and A. Zisserman, "Video google: a text
retrieval approach to object matching in videos," in
International Conference on Computer Vision, 2003.

[13] Svetlana Lazebnik · Cordelia Schmid · Jean Ponce,
"Beyond Bags of Features: Spatial Pyramid Matching
for Recognizing Natural Scene Categories," in
computer vision and pattern recognition, 2006.

[14] R. B. Girshick, "Fast R-CNN," in international
conference on computer vision, 2015.

[15] C Lawrence Zitnick · Piotr Dollar, "Edge Boxes:
Locating Object Proposals from Edges," in European
Conference on Computer Vision, 2014.

[16] J. Uijlings, K. van de Sande, T. Gevers, and A.
Smeulders, "Selective search for object recognition,"
Internation Journal of Computer Vision, 2013.

[17] B. Alexe, T. Deselaers, and V. Ferrari, "Measuring the
objectness of image windows," IEEE, Transactions on
Pattern Analysis and Machine Intelligence, 2012.

[18] I. Endres and D. Hoiem., "Category independent object
proposals.," European Conference on Computer
Vision, 2010.

[19] J. Davis and V. Sharma, "Background-Subtraction
using Contour-based Fusion of Thermal and Visible
Imagery," Computer Vision and Image Understanding,
vol. 106, no. 2-3, pp. 162-182, 2007.

International Journal of Neural Networks and Advanced Applications Volume 6, 2019

ISSN: 2313-0563 52

